
SonicData: An Open-Source Instrument Data Acquisition Program

Benjamin Stauffer

March 16, 2007

Joseph A. Counsil (Department of Chemistry)

Bruce McMillin (Department of Computer Science)

University of Missouri-Rolla

Rolla, MO 65401

Abstract

 A low-cost voltage-to-frequency interface can be used to collect and process data from
instrumentation by means of a sound-card input to a personal computer. A program was
designed to read, analyze, process, and generate reports from the resulting data stream. The
program design was based upon a list of requirements from the user, including parameters
specifying data rate and range, real-time presentation, data analysis, report generation, and the
user interface. The program was written in C++ using open source libraries. Program operation
is adaptable through use of a configuration file. The source code was designed to be easily
adapted for other applications. Users can save the data in a graphical, plain text, or spreadsheet
format.

SonicData: An Open-Source Instrument Data Acquisition Program

The usefulness of old instrumentation in the UMR Chemistry department is limited by
the lack of modern computing capabilities. The department’s instrumentation laboratory
contains a combination of old and new instrumentation, some of the newer being computerized.
However, the older instrumentation presents its output on paper-based chart recorders,
precluding the ability to save data in computer-based formats and manipulate data sets.

Options for updating the older instrumentation include adapting a preexisting interface to
the devices or creating a new interface. Commercial computer interfaces are expensive, and
specific to instrument type, thus requiring numerous non-uniform solutions. Therefore, this
investigation seeks to determine the feasibility of providing a low-cost, easily adaptable interface
for a variety of instruments, and to design such an interface.

Hardware Interface

A voltage-to-frequency converter to interface between laboratory instrumentation and a
desktop computer was designed and built by Joseph Counsil of the UMR Chemistry department
(see Figure 1). The interface generates a filtered square wave (see Figure 2). The fundamental
frequency of the wave is directly proportional to the output voltage from the instrumentation,
which ranges between 1 millivolt and 5 volts; however, due to the simplicity of the device, it
may easily be adapted to support a wider range of voltages, allowing it to be used in a large
number of applications.

Figure 1. The schematic of the voltage-to-frequency converter.

Figure 2. An oscilloscope output showing the filtered square wave generated by the voltage-to-frequency converter.

Due to the fact that the device is generating a filtered square wave and not a sine wave,
there are harmonic frequencies being generated, as shown in the Spectran1 screenshot in Figure
3. Therefore, Digital Signal Processing (DSP) must be performed to filter the harmonics, thus
isolating the remaining fundamental frequency from which data points may be determined.

Figure 3. A spectrograph of the voltage-to-frequency converter output showing the fundamental frequency (the
highest peak) and harmonics.

The device has been demonstrated to work successfully using a computer sound card as
an analog-to-digital data-acquisition interface. The remaining need is for a software application
to interface with the device to collect and process the data, generate reports, and allow the user to
save the data in a useful file format.

Program Requirements

The requirements of this program were determined based upon the instrumentation needs.
They include the following:

1. As the hardware will generate a frequency oscillator between 500 and 3000 Hz, the
software must be able to correctly detect and filter frequencies within this range.

2. The accuracy of the determined frequency must be three significant digits.
3. An experiment may be run for a length of time predetermined by the user. The user must

be able to extend the time or end the run early as desired.
4. Raw sampling rates must range from 100 samples per second to 1 sample per hour.
5. The program must give the user an option to calculate and store the average of every N

samples, where N is specified by the user.
6. The program must be compatible with Windows 98 and newer. Compatibility with Linux

is preferred. Compatibility with Windows 95 is desirable but not required.
7. The software must include:

a. An easily readable and modifiable configuration file, allowing the program to be
configured for a number of desirable applications.

b. A configuration menu allowing users to modify the options given in the
configuration file.

c. A method of preventing end users from modifying certain settings as determined
by the system administrator.

d. Graphical real-time data presentation during data acquisition.
e. An end-of-run graph displayed following acquisition, automatically scaled, with

peaks in the collected data marked and labeled.
f. An end-of-run report must present the time of each peak in the data and the

percentage of the total area under each peak.
g. The ability for the user to zoom in on a data subset following collection and

process it separately as desired.
h. The ability for the user to save collection results as an Excel spreadsheet or as a

text document with a configurable delimiter.
8. The program must be written in a maintainable fashion, with appropriate comments in the

code and documentation fully explaining its operation.
9. The source code of the program will be released under the GNU Public License; as such,

it can only use libraries compatible with this license.

Program Development

SonicData was developed in C++ using the MinGW2 C++ compiler for Windows. Using
MinGW was preferable as it is a port of the GNU3 compilers commonly used on Linux systems,
allowing easier cross-platform development (see requirement 6). The Allegro4 graphics library
was used for all graphical output. The PortAudio5 library was used for audio input. These
libraries were chosen because they are available for both Windows and Linux platforms (see
requirement 6), and they are both compatible with the GNU Public License (see requirement 9).

The program builds on the functionality of another program called DansTuner6, a
software tuner for musical instruments, which was discovered during pre-development research.
Most of the code involving audio input and frequency calculation was borrowed from
DansTuner, but it was modified to meet the requirements of the user. As DansTuner was
released under the GNU Public License, the source code for a derivative project like SonicData
must also remain freely available under this license.

One of the most important features of the program is an easily modifiable configuration
file which allows the user to tailor the program for a wide range of instruments with changes to
sampling rate and/or frequency range. The configuration file is an ASCII text file and is
arranged in an easily readable format. At the system administrator’s discretion, certain
parameters may be protected from user modification.

A number of challenges were discovered in the process of writing the program. Among
the first of these was learning how to compile and use the PortAudio and Allegro libraries, which
was resolved using documentation found on the Internet. While testing a prototype of the
program with an early prototype of the voltage-to-frequency converter, it was discovered that
changing the operating system volume settings and modifying the filtering method used by
DansTuner yielded far more reliable data. Early in the program development it was suggested
that multithreading be used to ensure that samples would be collected at correct intervals
regardless of the ability of the system to output the data to the screen or to a file in real time.
Later on, it was discovered that multithreading in MinGW would be more difficult to implement
as it is not consistent with the POSIX style threads used by Linux-based systems. With the
user’s approval, it was decided to test the program without multithreading, and the performance
was determined to be satisfactory.

Program Operation

Figure 4. An activity diagram describing the basic layout of the SonicData program.

When the program is run, configuration data is loaded from the configuration file and
stored in a struct, and the main menu is displayed. Each menu button is associated with a
separate function in the main implementation file. A pointer to the configuration struct is passed
to all menu functions.

In the configuration menu, the user may alter the any settings that have not been locked
by the system administrator; the variables within the configuration struct are modified to reflect
the new desired values, and the modified settings may be saved to a configuration file.

Upon calling the data collection routine (see Figure 5), a PortAudio recording stream is
initialized. The collection routine draws a graph on the screen and then waits for the user to
click the “Start Collection” button to begin the run. Once clicked, the program begins a loop
which will terminate once the user clicks “Stop Collection” or, in the case of a timed run, the run
time is completed. Within the loop, a function called audioSoFar is repeatedly called. The
audioSoFar function calls two functions, Autocorrelation and bestPeak. The Autocorrelation
function windows the data using a Bartlett function, which was found to yield more accurate
results than the Hamming function used by DansTuner. It then processes the audio input using a
Fast Fourier Transform function to find the peaks in the sample. The bestPeak function returns
the tallest of the peaks, which represents the fundamental frequency of the audio input. Program
control returns to the collection loop. If the user desires to average a given number of points, the
new value is added to a total which will be averaged and graphed once the desired number of
points is collected. Otherwise, the frequency is directly added as a point on the graph. If the
previous point is determined to represent a peak in the graph based on the current point, it is
marked accordingly. The loop sleeps for a given number of milliseconds before restarting. The
length of the sleep partially determines how many points will be collected per second; other
factors will include the time needed to complete the audio processing and the screen refreshing.

Figure 5. A data flow chart of the Data Collection routine.

Following a collection run, program control passes to a post-run analysis function, which
integrates the area under each peak and generates a report stating the location and percentage of
the total area under each peak. The user may choose to save the collection results, begin a new
collection run, or return to the main menu.

Results

The program is currently in pre-alpha stages, and is set to be finished in April 2007. Data
point graphing is functioning correctly and requires only a few modifications to be considered
finalized. Once this is completed, the post-run report with peak integration will be finished.

Figure 6. SonicData as of March 15, 2007. Data collection from the voltage-to-frequency converter is being
shown. The voltage to the converter is being controlled by a temporary knob.

Discussion

In its current form, the program is not yet complete; however, its main functionality of
collecting and displaying data is working as expected and is in near-final form. The accuracy of
the collected data has been verified with other programs including Spectran. The program has
been developed at no cost to the author.

Until this point, testing has been limited to Windows platforms. As the program was
written to be cross-platform, however, it will be also thoroughly tested under Linux. Other
platforms are also possible, such as the Apple Macintosh.

It is expected that the program will be hosted on SourceForge.net. An application to
reserve http://sonicdata.sourceforge.net has been submitted and is under review at the time of
this writing. SourceForge offers a number of beneficial tools for hosting open-source projects,
including storage of previous versions of each file in the source code, bug tracking, and message
boards for users who have questions regarding the program. The full source code of the program
and the schematic for the voltage-to-frequency converter will be made available publicly under
the GNU Public License.

Figure 7. A simulated image showing the expected appearance of the post-collection screen. Note that all numbers
in this image are simulated.

Acknowledgements

The author wishes to thank the following people for their contributions to the project:
Joseph Counsil (research advisor), Dr. Bruce McMillin (Computer Science department advisor),
Dan Frankowski (author of DansTuner), the authors and contributors of the PortAudio and
Allegro libraries, and the authors of the MinGW compilers.

References

1 Di Bene, Alberto. Spectran Version 2. (n.d.). Retrieved March 15, 2007, from
http://digilander.libero.it/i2phd/spectran.html

2 MinGW – Minimalist GNU for Windows. (2004). Retrieved March 15, 2007, from
http://www.mingw.org

3 GNU's Not Unix! - Free Software, Free Society. (2007). Retrieved March 15, 2007, from
http://www.gnu.org

4 Allegro – A Game Programming Library. (2007). Retrieved March 15, 2007, from
http://alleg.sourceforge.net

5 Burk, Phil. PortAudio - Portable Cross-platform Audio API. (n.d.). Retrieved March 15,
2007, from http://www.portaudio.com

6 Frankowski, Dan. DansTuner. (n.d.). Retrieved March 15, 2007, from
http://danstuner.sourceforge.net

